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This work is intended to investigate the geometry of anti-de Sitter spacetime (AdS),
from the point of view of the Laplacian Comparison Theorem (LCT), and to give
another description of the hyperbolical embedding standard formalism of the de Sitter
and anti-de Sitter spacetimes in a pseudoeuclidean spacetime. After Witten proved
that general relativity is a renormalizable quantum system in (1 + 2) dimensions, it is
possible to point out few interesting motivations to investigate AdS spacetime. A lot of
attempts were made to generalize the gauge theory of gravity in (1 + 2) dimensions to
higher ones. The first one was to enlarge the Poincaré group of symmetries, supposing
an AdS group symmetry, which contains the Poincaré group. Also, the AdS/CFT
correspondence asserts that a maximal supersymmetric Yang–Mills theory in four-
dimensional Minkowski spacetime is equivalent to a type IIB closed superstring theory.
The 10-dimensional arena for the type IIB superstring theory is described by the product
manifold S5× AdS, an impressive consequence that motivates the investigations about
the AdS spacetime in this paper, together with the de Sitter spacetime. Classical results
in this mathematical formulation are reviewed in a more general setting together with
the isometry group associated to the de Sitter spacetime. It is known that, out of the
Friedmann models that describe our universe, the Minkowski, de Sitter, and anti-de
Sitter spacetimes are the unique maximally isotropic ones, so they admit a maximal
number of conservation laws and also a maximal number of Killing vectors. In this
paper it is shown how to reproduce some geometrical properties of AdS, from the
LCT in AdS, choosing suitable functions that satisfy basic properties of Riemannian
geometry. We also introduce and discuss the well-known embedding of a four-sphere
and a four-hyperboloid in a five-dimensional pseudoeuclidean spacetime, reviewing the
usual formalism of spherical embedding and the way how it can retrieve the Robertson–
Walker metric. With the choice of the de Sitter metric static frame, we write the so-
called reduced model in suitable coordinates. We assume the existence of projective
coordinates, since de Sitter spacetime is orientable. From these coordinates, obtained
when stereographic projection of the de Sitter four-hemisphere is done, we consider
the Beltrami geodesic representation, which gives a more general formulation of the
seminal full model described by Schrödinger, concerning the geometry and the topology
of de Sitter spacetime. Our formalism retrieves the classical one if we consider the
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metric terms over the de Sitter splitting on Minkowski spacetime. From the covariant
derivatives we find the acceleration of moving particles, Killing vectors and the isometry
group generators associated to de the Sitter spacetime.

KEY WORDS: Laplacian comparison theorem; de Sitter and anti-de Sitter spacetimes;
Beltrami representation; Killing vectors.

1. INTRODUCTION

Today it is of great interest to investigate isometry groups of a given universe
model, and it becomes natural to ask whether some models admit the energy con-
servation law. We restrict our attention to de Sitter (dS) and anti-de Sitter (AdS)
spacetimes, which are respectively solutions of Einstein equations with cosmo-
logical constant � = ±3/R2 (R > 0), and curvature given by the components
Rµν = �gµν of the Ricci tensor. These manifolds have shown themselves suitable
as geometric arenas to investigate conformal field theories (Di Francesco et al.,
1996) and superstrings (Kaku, 2000). Since de Sitter group is the maximal inner
group contained in the conformal group, many physical theories are formulated in
dS and AdS scenarios. The maximally compact subgroup of SO(3,2), the symme-
try group of the dS3,2 spacetime, is SO(3)×SO(2), which is twofold covered by
SU(2)×U(1). It can therefore be used as an alternative formalism to describe the
Glashow–Weinberg–Salam model of electroweak interactions (Weinberg, 1967),
since the gauge group SU(2)×U(1) is related to the isospin and weak hypercharge
of elementary particles. The group SO(3,2) is also a dynamical group associated to
the Zitterbewegung (Barut and Bracken, 1981; Huang, 1992). dS and AdS space-
times also allow exact solutions of the field equations and the symmetry group
SO(4,1) is used to classify physical states (Börner and Dürr, 1969; Prasad, 1966).

dS spacetime is geometrically described as a four-hyperboloid with topology
S3 × R. If a Wick rotation of the time coordinate is performed, dS can be seen as
a four-sphere, and then it is possible, using the methods of projective geometry
(Arcidiacono, 2000), to describe dS spacetime in terms of Minkowski orthogonal
coordinates. From now on dS4,1 denotes the de Sitter spacetime embedded in a
pseudoeuclidean spacetime endowed with a metric of signature (4,1).

This article is organized as follows: In Section 2 the metric in AdS is obtained,
describing the geometry of a simply connected hyperbolic spacetime of constant
sectional curvature k. The Laplacian Comparison Theorem is also proved, from
the viewpoint of AdS geometry, which is briefly reviewed. In Section 3 we present
and discuss the main differences between the spherical and hyperbolical embed-
ding in a pseudoeuclidean spacetime, retrieving the Robertson–Walker metric by
the introduction of an appropriate expansion parameter. Some of the features of
the Schrödinger model (Schrödinger, 1957) are reviewed, together with a brief ex-
position of the de Sitter metric, using the static frame. In Section 4, after the metric
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of dS4,1 is constructed, the covariant derivative and subsequently the acceleration
of a moving particle are explicitly given in terms of the Christoffel connection
symbols. The Killing vectors are obtained from the Killing equations, and also
the generators of the isometry group of dS4,1. In Section 5, after performing a
Wick rotation in time coordinate, dS4,1 spacetime is described as a four-sphere
and the Beltrami representation is obtained. It gives an useful way to describe em-
bedded projective coordinates as the usual orthogonal coordinates on Minkowski
spacetime. The de Sitter metric, which is retrieved if we consider the linear metric
tensor components on Minkowski spacetime, is generalized.

2. REVISITING THE Ads GEOMETRY AND THE LAPLACIAN
COMPARISON THEOREM

In this section we revisit the approach given in Escobar (2000) in the case
when the manifold M is given by the hyperbolic AdS spacetime. From now on
we denote ∂α = ∂/∂α and we call by metric, a nondegenerate symmetric bilinear
form.

Consider a C2 function ψ : M → R and vector fields X, Y ∈ �(M). The
hessian of ψ is defined as

Hψ(X, Y ) = DX dψ(Y ) = XY (ψ) − DXY (ψ). (1)

The metric in R
n is given by

g = dr ⊗ dr + ψ2(r) d� ⊗ d�, (2)

where d� ⊗ d� : Tx(Sn−1) × Tx(Sn−1) → R is the metric on the (n − 1)-sphere
Sn−1, for x = r�, r > 0, � ∈ Sn−1. The tangent space at x ∈ Sn−1 is denoted by
Tx(Sn−1). From the definition of the hessian, and using the fact that the curves r�

for � fixed are geodesics, and ∂r is the velocity vector, we have

Hr (∂r , ∂r ) = ∂r∂rr − D∂r
∂rr = 0. (3)

Besides, if X · ∂r = 0, the expression

Hr (∂r ,X) = Hr (X, ∂r ) = X (∂rr) − (DX∂r ) r (4)

follows. But since (DX∂r )r = (DX∂r ) · ∂r , if we suppose that the radial geodesics
are parametrized by the arc lenght, i.e.,

∂r · ∂r = 1, (5)

we can covariantly differentiate Eq. (5) with respect to X, obtaining (DX∂r ) · ∂r =
0. Therefore,

Hr (∂r ,X) = 0. (6)
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Let a ∈ R
∗
+, and suppose that the vector fields X and Y are tangent to the level

hypersurface r = a. Then

Hr(X, Y ) = −(DXY )(r) = −(DXY ) · ∂r = Y · (DX∂r ), (7)

since Y · ∂r = 0. Now, let {ei}n−1
i=1 be a set of orthonormal (coordinate) frame on

Sn−1, and without loss of generality, let en := ∂r be the normal vector field to the
hypersurface r = c. On one hand we have

ei · (Dej
∂r ) = ei · (Dej

en) = �
p

jnep · ei = �jin, (8)

where �abc are the Christoffel symbols. On the other hand, these symbols are also
given by

�jin = 1

2
(∂rgij + ∂xj gin − ∂xi gjn) = 1

2
∂r (ψ2g

◦
ij ) = ψψ ′g◦ij = ψ ′

ψ
(ψ2g

◦
ij )

= ψ ′

ψ
gij (9)

where g
◦ := d� ⊗ d� denotes the metric in Sn−1. So the following proposition

has just been proved:

Proposition 1 Let g : R
n × R

n → R, given explicitly by g = dr ⊗ dr +
ψ2(r) d� ⊗ d�, be the metric in R

n, where d� ⊗ d� : Tx(Sn−1) × Tx(Sn−1) →
R denotes the metric in Sn−1. Consider the distance function r = r(x), then for
x = r�, r > 0, and � ∈ Sn−1 the relation

Hr(x) = ψ ′(r)

ψ(r)
(g − dr ⊗ dr) (10)

is verified, and the laplacian of r is given by

�r(x) = (n − 1)
ψ ′(r)

ψ(r)
. (11)

Suppose now that the metric in R
n is given by

g = dr ⊗ dr + ψ2
k (r) d� ⊗ d�, (12)

where

ψk(r) =




1√−k
sin h(

√−kr) k < 0,

r k = 0,
1√
k

sin(
√

kr) k > 0.

(13)

In the first case (k < 0) a metric in AdS is obtained, and AdS does correspond to
a simply connected hyperbolic spacetime of constant sectional curvature k. It is
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immediate that

dψk(r)

dr
=




cosh(
√−kr) k < 0,

1 k = 0,

cos(
√

kr) k > 0.

(14)

From now on we are concerned about the case k < 0, describing the AdS geometry.
Let rk the geodesic distance to the origin with respect to the metric (12). From
Eq. (14), we obtain

Hαk = √−k coth(
√−kr)(g − dr ⊗ dr), (15)

and then it follows that

1

n − 1
�rk =




1√−k
coth(

√−kr) k < 0,

1/r k = 0,

1√
k

cot(
√

kr) k > 0.

(16)

This result shall still be used. Now we assert and show some properties of the
AdS geometry, based on the Laplacian Comparison Theorem (for more details,
see Escobar, 2000).

Theorem 1. Let X, Y be vector fields in the manifold AdS. Assume that the Ricci
curvature in all points of the AdS manifold satisfies Ric(X, Y ) ≥ (n − 1)gk. If
r denotes the geodesic distance to a point p ∈ AdS and if it is a differentiable
function at x ∈ AdS, then

�r(x) ≤ �rk(s), (17)

where s = r(x). Equality holds only if any sectional curvature along the
minimizing geodesic between p and x, that contains r , is constant and equal to k.

Proof: Let α ∈ C3(AdS) and {ei}ni=1 be an orthonormal frame field in a
tangent space at a point p ∈ AdS. Then ||∇α||2 = fif

i . For each j = 1, . . . , n it
can be verified that (

1

2
||∇α||2

)
j

= (αiαi)j . (18)

Hence, if � denotes the laplacian, it follows that

1

2
�(||∇α||2) =


1

2

n∑
j=1

||∇α||2



jj

=
n∑

i,j=1

(αijαij + αiαijj ). (19)
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Since the Ricci equation asserts that αikl = αilk + Rs
klifs (Ornea and Ormani,

1995), where Rklis denotes the coefficients of the Riemann curvature tensor, it
follows that

1

2
�(||∇α||2) =

n∑
i,j=1

(
α2

ij + αiαjji + Rijαiαj

)
, (20)

which implies that

1

2
�(||∇α||2) = ||Hα||2 + ∇(�α) · ∇α + Ric(∇α,∇α). (21)

In the particular case when ||∇α|| = 1, then ||Hα||2 + (�α)′ + Ric(∇α,∇α) = 0.
If r(x) = distance (x, p) is differentiable at x along the minimizing geodesic
joining p to x, it follows that

||Hr||2 + (�r)′ + Ric(∂r , ∂r ) = 0. (22)

Now, since Hr(∂r , ∂r ) = 0, the hessian of r has an eigenvalue equal to zero.
Then

||Hr||2 ≥ (�r)2

n − 1
. (23)

Substituing Eq. (23) in Eq. (22), we obtain

(�r)′ + (�r)2

n − 1
+ Ric(∂r , ∂r ) ≤ 0. (24)

Using the hypothesis of the theorem, and asserting that Ric(∂r , ∂r ) ≥ k(n − 1),
Eq. (24) gives

(�r)′ + (�r)2

n − 1
+ k(n − 1) ≤ 0. (25)

It is immediate to see that the function

ψ = (n − 1)
√

|k| coth(
√−kr), k < 0, (26)

satisfies the equation ψ ′ + ψ2

n−1 + k(n − 1) = 0.

Now, let τ : [0, s) → R be a function that satisfies τ (0) = 0 and ψ(τ (t)) =
�r(t). But since

(�r)′ + (�r)2

n − 1
+ k(n − 1) ≤ 0 = ψ ′(τ (t)) + ψ2(τ (t))

n − 1
+ k(n − 1), (27)

then (�r)′ ≤ ψ ′(τ (t)), which implies

�r ′(τ (t))τ ′(t) ≤ ψ ′(τ (t)). (28)
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and ψ ′(t) < 0. Therefore τ ′(t) ≥ 1, τ (t) ≥ t and

�r(t) = ψ(τ (t)) ≤ ψ(t), (29)

since ψ is a decreasing function (Escobar, 2000). If equality holds in Eqs. (17)
and (23) gives an equality, and it only happens when Hr has all its eigenvalues
equal, except the zero eigenvalue (that comes from Hr(∂r , ∂r )). Since �r = �rk ,
∀r ≤ s, Hr has n − 1 eigenvectors equal to ψ/(n − 1).

Supposing that {ei} diagonalize Hr and that en = ∂r , from Eq. (6) it follows
that

Dei
∂r = ψ

n − 1
ei . (30)

At x, [ei, ∂r ] = 0, and then

K(ei, ∂r ) = R(ei, ∂r , ∂r , ei) = (Dei
D∂r

∂r − D∂r
Dei

∂r − D[ei ,∂r ]∂r ) · ei

= − (D∂r
(ψei))

n − 1
· ei

= − ψ ′

n − 1
− ψ

n − 1
(Der

ei) · ei

= − ψ ′

n − 1
k − ψ2

(n − 1)2

= k, from Eq. (27). (31)

�

3. SPHERICAL AND HYPERBOLICAL EMBEDDING

In this section we provide a brief exposition of the Robertson–Walker metric
and the hyperbolic embedded coordinates.

3.1. The Robertson–Walker Metric

A four-sphere has positive curvature and it satisfies the equation

ξ 2
1 + ξ 2

2 + ξ 2
3 + ξ 2

4 + ξ 2
0 = R2, (32)

where {ξA}4
A=0 are cartesian coordinates in pseudoeuclidean E

4,1 spacetime and
R is the four-sphere radius. Then

dξ0 = −ξ−1
0 (ξ1 dξ1 + ξ2 dξ2 + ξ3 dξ3 + ξ4 dξ4) = −(R2 − r2)−1/2(r · dr),

(33)
where r = (ξ1, ξ2, ξ3, ξ4) and r2 = r · r. On the four-sphere the metric is given by

gs = dξ1 ⊗ dξ1 + dξ2 ⊗ dξ2 + dξ3 ⊗ dξ3 + dξ4 ⊗ dξ4 + dξ0 ⊗ dξ0
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= dr ⊗ dr + r2 d� ⊗ d� + 1

R2/r2 − 1
dr ⊗ dr

= 1

1 − r2/R2
dr ⊗ dr + r2 d� ⊗ d�,

where d� ⊗ d� : Tx(S3) × Tx(S3) → R is the line element on the three-sphere.
If we put the time-dependent expansion parameter a(t), the Robertson–Walker
metric, written in polar coordinates, is given by

g = −dt ⊗ dt + a2(t)

1 − kr2
dr ⊗ dr + a2(t)r2(dθ ⊗ dθ + sin2 θ dφ ⊗ dφ),

(34)
where k = 1/R2. If the three-sphere is parametrized by polar coordinates

ξ4 = a cos ζ

ξ3 = a sin ζ cos θ

ξ1 = a sin ζ sin θ sin φ

ξ2 = a sin ζ sin θ cos φ, 0 < θ, ζ < π, 0 ≤ φ < 2π,

then

d� ⊗ d� ∝ dζ ⊗ dζ + sin2 ζ (dθ ⊗ dθ + sin2 θ dφ ⊗ dφ). (35)

Assuming the map sin ζdr = r dζ (Schrödinger, 1957), it follows the expression

cos ζ = (1 − kr2)(1 + kr2)−1. (36)

If it is compared with Eq. (34) we see that the metric in Eq. (35) indeed charac-
terizes a spherical manifold.

3.2. The Hyperbolical Embedding

A four-hyperboloid has negative curvature and it can be used to describe de
Sitter (dS4,1, dS3,2) or anti-de Sitter (AdS1,4, AdS2,3) spacetimes, according to
the metric signature. We choose to treat the (4,1)-signature case. It satisfies the
equation (Arcidiacono, 2000)

ξ 2
1 + ξ 2

2 + ξ 2
3 + ξ 2

4 − ξ 2
0 = R2, (37)

from which it is immediately seen that

dξ0 = ξ−1
0 (ξ1 dξ1 + ξ2 dξ2 + ξ3 dξ3 + ξ4 dξ4) = (r2 − R2)−1/2(r · dr). (38)

On the four-hyperboloid surface the metric is given by

gh = dξ1 ⊗ dξ1 + dξ2 ⊗ dξ2 + dξ3 ⊗ dξ3 + dξ4 ⊗ dξ4 − dξ0 ⊗ dξ0
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= dr ⊗ dr + r2d� ⊗ d� + 1

1 − R2/r2
dr ⊗ dr

= 2 − 1/kr2

1 − kr2
dr ⊗ dr + r2d� ⊗ d�,

where in this case, d� ⊗ d� denotes the metric on the three-hyperboloid.

3.3. The Classical Model

Schrödinger have described the reduced model (Schrödinger, 1957), ob-
tained when one considers the cross section ξ3 = ξ4 = 0. The E

4,1 spacetime
becomes a pseudoeuclidean (2+1)-spacetime endowed with Lorentzian met-
ric g = dξ1 ⊗ dξ1 + dξ2 ⊗ dξ2 − dξ0 ⊗ dξ0, and the four-hyperboloid given by
Eq. (37) becomes

ξ 2
1 + ξ 2

2 − ξ 2
0 = R2. (39)

If pseudospherical coordinates are used, in order to parameterize ξ0, ξ1, ξ2, as

ξ1 = R cos χ cosh(t/R)

ξ2 = R sin χ cosh(t/R)

ξ0 = R sinh(t/R), −∞ < t < ∞, 0 ≤ χ < 2π, (40)

a map which is nowhere singular is obtained and it satisfies Eq. (39). The metric
is then given by

gr = −R2 cosh2 dχ ⊗ dχ + R2dt ⊗ dt. (41)

We observe that the new time t varies less rapidly than ξ0.
In order to recover the full model given by Eq. (39), Schrödinger modified

Eq. (40) by two more polar angles, (θ, φ) and then the term

dχ ⊗ dχ + sin2 χ (dθ ⊗ dθ + sin2 θdφ ⊗ dφ) (42)

is used to enlarge the metric given implicitly by Eq. (41). Besides, instead of
choosing χ as above, if the relation sin χ = ξ1/R is imposed, another map is
defined as follows:

ξ1 = R sin χ

ξ2 = R cos χ cosh(t/R)

ξ0 = R cos χ sinh(t/R). (43)

It reaches another set of pseudopolar angles (χ, t) on the two-hyperboloid. The
metric induced by this parametrization is gr := −R2dχ ⊗ dχ + R2 cos2 χdt ⊗
dt. If we want to retrieve the full model again, Eq. (39), we make the metric
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enlargement given by Eq. (42). This is the so-called static frame of the de Sitter
metric. In a more familiar form, the coordinates (ρ, η) are introduced, parametriz-
ing the reduced de Sitter spacetime as

ρ = R sin χ, η = Rt, (44)

which gives

gr = −(1 − ρ2/R2)−1dρ ⊗ dρ + (1 − ρ2/R2)dη ⊗ dη. (45)

Formally the de Sitter dS4,1 spacetime is uniquely given by the S3 × R topology
of the four-hyperboloid

ξ 2
1 + ξ 2

2 + ξ 2
3 + ξ 2

4 − ξ 2
0 = R2 (46)

and it can be viewed as a four-sphere ξ 2
1 + ξ 2

2 + ξ 2
3 + ξ 2

4 + ξ 2
0 = R2, if a Wick

rotation on the ξ0 coordinate is made: ξ0 �→ iξ0, where i is the imaginary complex
unit. If the inferior hemisphere of the Wick-rotated four-sphere is parametrized,
using the coordinates (t, ρ, θ, φ) as

ξ0 = −R(1 − ρ2/R2)1/2 cosh(t/R)

ξ1 = ρ sin θ cos φ

ξ2 = ρ sin θ sin φ

ξ3 = ρ cos θ

ξ4 = R(1 − ρ2/R2)1/2 sinh(t/R), (47)

where −∞ < t < ∞, 0 < ρ < R, 0 < θ < π and 0 < φ < 2π , the (full model)
same metric given by Eq. (45) is obtained

g = −(1 − ρ2/R2)−1dρ ⊗ dρ + (1 − ρ2/R2) dt ⊗ dt

− ρ2dθ ⊗ dθ − ρ2 sin2 θ dφ ⊗ dφ. (48)

3.4. ISOMETRY GROUP GENERATORS AND KILLING VECTORS
ASSOCIATED TO AdS4,1

Before we obtain a description of the Sitter metric which is equivalent to the
Schrödinger model on Minkowski spacetime, we discuss how the dS4,1 isometry
group emerges from the Killing equations related to this spacetime. We also
digress about covariant derivatives and accelerations associated to an arbitrary
moving frame on dS4,1.

Given the metric (Eq. (48))

g = −(1 − ρ2/R2)−1dρ ⊗ dρ + (1 − ρ2/R2) dt ⊗ dt
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− ρ2 dθ ⊗ dθ − ρ2 sin2 θ dφ ⊗ dφ, (49)

let us compute the connection Christoffel symbols of dS4,1:

�0
01 = �0

10 = −�1
11 = −ρR−2(1 − ρ2/R2)−1

�1
00 = ρR−2(1 − ρ2/R2), �1

22 = −ρ(1 − ρ2/R2)

�1
33 = −ρ(1 − ρ2/R2) sin θ, �2

33 = − sin θ cos θ

�2
12 = �2

21 = �3
13 = �3

31 = ρ−1, �3
23 = �3

32 = cot θ

where the index notation was changed: t �→ 0, ρ �→ 1, θ �→ 2 and φ �→ 3. Using
the above symbols, the acceleration of moving particles is obtained, which follows
immediately from the covariant derivatives. First the moving frame {∂t , ∂ρ, ∂θ , ∂φ}
and its respective dual frame {dt, dρ, dθ, dφ} is chosen in a tangent (cotangent)
space at a point on dS4,1 spacetime. The following expressions for the covariant
derivative D are obtained:

D(∂θ ) = −ρ(1 − ρ2/R2)dθ ⊗ ∂ρ + cot θ dφ ⊗ ∂φ + ρ−1dρ ⊗ ∂θ

D(∂t ) = −ρR−2(1 − ρ2/R2)−1dρ ⊗ ∂t − ρR−2(1 − ρ2/R2) dt ⊗ ∂ρ

D(∂φ) = cot θ dθ ⊗ ∂φ − sin θ cos θ dφ ⊗ ∂θ − ρ(1 − ρ2/R2) sin2 θ dφ ⊗ ∂ρ

+ ρ−1dρ ⊗ ∂φ

D(∂ρ) = −ρR−2(1 − ρ2/R2)−1(dt ⊗ ∂t − dρ ⊗ ∂ρ) + ρ−1(dθ ⊗ ∂θ + dφ ⊗ ∂φ).

Applying the covariant derivatives along the orthonormal frame vectors, the re-
spective accelerations are obtained:

aθ = D∂θ
(∂θ ) = −ρ(1 − ρ2/R2)∂ρ

at = D∂t
(∂t ) = −ρR−2(1 − ρ2/R2)∂ρ

aρ = D∂ρ
(∂ρ) = ρR−2(1 − ρ2/R2)−1∂ρ

aφ = D∂φ
(∂φ) = − sin θ cos θ∂θ − ρ(1 − ρ2/R2) sin2 θ∂ρ.

Since dS4,1 is a maximally isotropic spacetime, it admits a maximal number, 10,
of Killing vectors, which can be obtained immediately from the following Killing
equations (see Table I):

∂θuθ + �uρ = 0

∂ρuθ + ∂θuρ − 2ρ−1uθ = 0

∂ρuφ + ∂φuρ − 2ρ−1uφ = 0

∂tuφ + ∂φut = 0

∂tuθ + ∂θut = 0
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Table I. The Killing Vectors Associated to dS4,1

p u0p u1p u2p u3p

1 ρω sin θ cos φ s −Rω−1 sin θ cos φ c −ρRω cos θ cos φ c ρRω sin θ sin φ c

2 −ρω sin θ sin φ s −Rω−1 sin θ sin φ c −ρRω cos θ sin φ c ρRω sin θ cos φ c

3 ρω cos θ c −Rω−1 cos θ c ρRω sin θ c 0
4 Rω2 0 0 0
5 0 0 0 −ρ2 sin2 θ

6 0 0 ρ2 cos φ −ρ2 sin2 θ cos θ sin φ

7 −ρω sin θ cos φ c Rω−1 sin θ cos φ s ρRω cos θ cos φ s ρRω sin θ sin φ s

8 0 0 ρ2 sin φ ρ2 sin2 θ cos θ cos φ

9 −ρω sin θ sin φ c Rω−1 sin θ sin φ s ρRω cos θ sin φ s ρRω sin θ cos φ s

10 −ρω cos θ s Rω−1 cos θ s −ρRω sin θ s 0

Note. We assumed the notation c = cosh(t/R) and s = sinh(t/R). The pth line corresponds to the uqp

component of the dS4,1 isometry group generators (p = 1, 2, . . . , 10).

∂tuρ + ∂ρut + 2R−2�ut = 0

∂ρuρ − R−2�−1ut = 0

∂tut + R−2�uρ = 0

where we introduced � = ρ(1 − ρ2/R2) and the {uµ}3
µ=0 evidently denotes the

Killing vectors. It would be desirable to evaluate the Killing equations related to
dS4,1. From the projective embedding to be presented in Section 5, the isometries
of dS4,1 can be obtained from the ones of E

4,1. The generators of the isometry
group of E

4,1 are given by

uA = ϒB
A ξB + σA, (50)

where ϒB
A and σA (A,B = 0, 1, 2, 3, 4) are constants. As already pointed, dS4,1

is maximally isotropic and consequently admits a maximal number of Killing
vectors, given by (with suitable choices of the ϒB

A ):

uAB = −ξAdξB + ξBdξA. (51)

Using the parametrization given by Eq. (47) we obtain explicitly all the isometry
generators shown in Table I.

4. EMBEDDED PROJECTIVE COORDINATES

The metric given by Eq. (45) can be generalized, using embedded projective
coordinates. They can be obtained if a stereographic projection of the four-sphere
on the Minkowski spacetime is done. It is well known that the Minkowski space-
time can be treated as a tangent space through the four-sphere South pole. This
map is the so-called Beltrami (or geodesic) representation (Notte Cuello and
Capelas de Oliveira, 1999). To see how to pass from the (4 + 1)-dimensional
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formulation to the (3 + 1)-dimensional orthogonal coordinates (x0, x1, x2, x3) on
the Minkowski spacetime we consider the Beltrami representation, which gives
the relation (Gomes, 2002)

xµ = −R
ξµ

ξ 4
.

Introducing the notation

σ 2 = xµxµ = −x2
0 + x2

1 + x2
2 + x2

3 (52)

and using Eq. (46) we have

ξ 4 = − R

(1 + σ 2/R2)1/2
, ξµ = xµ

(1 + σ 2/R2)1/2
. (53)

By implicit differentiation it follows that

dξ 4 = xµdxµ

R(1 + σ 2/R2)3/2
, dξν = (R2 + σ 2)dxν + (xµdxµ)xν

R2(1 + σ 2/R2)3/2
. (54)

Using the above expressions we obtain:

g = dξA ⊗ dξA = (1 + σ 2/R2)−1dxµ ⊗ dxµ

+ R−2(1 + σ 2/R2)−2[xµdxµ ⊗ xµdxµ + 2xνxµdxν ⊗ dxµ].

(55)

This metric is clearly similar to the one given by Eq. (48), if the substitution
σ �→ iρ is done, obtaining:

g = (1 − ρ2/R2)−1dxµ ⊗ dxµ

+ R−2(1 − ρ2/R2)−2[xµdxµ ⊗ xµdxµ + 2xνxµdxν ⊗ dxµ]. (56)

Using Eq. (52) we can write

g = (1 − ρ2/R2)−1dρ ⊗ dρ

+ R−2(1 − ρ2/R2)−2[xµdxµ ⊗ xµdxµ + 2xνxµdxν ⊗ dxµ]. (57)

As can be seen directly, this expression retrieves the Schrödinger description of the
static frame of de Sitter metric, Eq. (45), or more generally, Eq. (48), if we consider
the metric terms which correspond to restriction on Minkowski spacetime.

5. CONCLUDING REMARKS

We reviewed the LCT in the light of AdS geometry, describing how the metric
in AdS spacetime is related to the constant sectional curvature of AdS. Some
important features of the topology of AdS are also investigated through the proof
of LCT an its previous demonstrated proposition. From the projective splitting
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of the de Sitter spacetime on Minkowski one we have expressed hyperbolical
(de Sitter) coordinates in terms of orthogonal (Minkowski) ones. The choice of
the Beltrami representation seems to be the best one adapted to this formulation.
Another metric concerning these embedded projective coordinates is constructed,
and our formalism retrieves the Schrödinger description of the static frame de
Sitter metric, if the terms of the metric restriction on Minkowski spacetime are
considered. We have shown that such metric could be obtained from an appropriate
parametrization of dS4,1, Eq. (47). It would be desirable to obtain the equations
of motion, from the Killing vectors explicitly evaluated, but it is the purpose of a
forthcoming paper.

ACKNOWLEDGMENTS

One of us (RR) is greatly indebted to Prof W. A. Rodrigues Jr., for stimulating
conversations and specially to Dr R. A. Mosna for pointing out some mistakes and
for giving many other helpful suggestions. Supported by CAPES.

REFERENCES

Arcidiacono, G. (2000). In La Teoria degli Universi, Vol. I and II, Chap. 12, Di Renzo, ed., Roma.
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